王晓伟
发布时间:2020-07-17        浏览次数:5068

职称:预聘副教授

电子邮件:xiaoweiwang@tongji.edu.cn

研究领域:

   桥梁抗震、基础设施多灾害防灾韧性、液化与冲刷效应、土-桩-结构相互作用、物理试验与数据驱动建模等







New! Immediate positions for post-doc, doctoral, and post-graduate students in the following areas:

  • Resilience modeling of individual bridges and associated transportation network under earthquakes and multi-hazard scenarios.

  • Effect of liquefaction on bridges and other infrastructure: Advanced modeling and design methodology.

  • Earthquake engineering with a focus on permanent ground displacement estimation: Physics-based and data-driven solutions.

  • Multi-hazard risk and resilience assessment of onshore and offshore wind turbines.

所属研究室

   桥梁抗震研究室

主要学历

  • 2013-2018,同济大学,土木工程专业,博士

  • 2015-2016,美国俄亥俄州立大学 (The Ohio State University),联合培养

  • 2010-2013,同济大学,桥梁与隧道工程专业,硕士

  • 2012-2012,西班牙马德里理工大学 (Polytechnic University of Madrid),硕士交流

  • 2006-2010,南京林业大学,土木工程专业,学士

任职经历:

  • 2019-2022,美国凯斯西储大学 (Case Western Reverse University),博士后

  • 2018-2019,河海大学,博士后

研究项目

  • 国家自然科学基金青年项目 (52008155),在研,主持
    液化侧扩流场地桩基桥梁抗震韧性评估方法

  • 美国土木工程师学会结构工程分会 (ASCE-SEI) 特别项目,在研,主持
    机器学习在结构工程风险分析中的应用前景分析

  • 中国博士后科学基金“特别资助”项目 (2019T120380),结题,主持
    冲刷和液化效应下桥梁基于风险的地震可恢复性评估方法

  • 中国博士后科学基金“一等资助”项目 (2018M640448),结题,主持
    同时考虑冲刷和液化影响的桩基桥梁地震损伤机理

学术兼职

  • 美国土木工程师学会 (ASCE) “结构风险评估与决策”专业委员会委员

  • 世界交通大会 (WTC) “桥梁韧性抗震设计理论与创新体系”工作小组成员

  • 国际期刊Frontiers in Built Environment, Buildings等客座主编

  • 期刊审稿记录:https://www.webofscience.com/wos/author/record/Q-3657-2016

荣誉奖励

  • 2021,上海市高层次人才计划

  • 2019,ASCE杰出审稿人

  • 2018,上海市优秀毕业生

期刊论文

Google Scholar: https://scholar.google.com/citations?user=mOfPbdAAAAAJ&hl=en

英文

  • J30.Wang X., Liu T., Wang J., and Ye A. (2022) “Weakened section detailing for scoured pile-group foundations in sands toward post-earthquake resilient behavior: Quasi-static tests.” Ocean Engineering, 266(1), 112897. [Link]

  • J29.Wang Z., Shafieezadeh A., Xiao X., Wang X., and Li Q. (202X) “Optimal monitoring location for tracking evolving risks to infrastructure systems: Theory and application to tunneling excavation risk.” Reliability Engineering and System Safety, 228: 108781. [Link]

  • J28.Chen X., Ikago K., Guan Z., Li J., and Wang X.* (2022) “Lead-Rubber-Bearing with Negative Stiffness springs (LRB-NS) for base-isolation seismic design of resilient bridges: A theoretical feasibility study.” Engineering Structures, 266: 114601. [Link]

  • J27.Wang X., Yuan Xinzhe, Feng R., and Dong Y. (2022) “Data-driven probabilistic curvature capacity modeling of circular RC columns facilitating seismic fragility analyses of highway bridges.” Earthquake Engineering and Resilience, 1(2): 1-14. [Link] [Code]

  • J26.Wang X.*, Mazumder R.K., Salarieh B., Salman A., Shafieezadeh A., and Li Y. (2022) “Machine learning for risk and resilience assessment in structural engineering: Progress and future trends”. Journal of Structural Engineering (ASCE), 148(8): 03122003. [Link]

  • J25.Ye Z., Shafieezadeh A., Feng D.C., Wu G., and Wang X. (202X) “Optimum weighted arithmetic means of peak- and spectral-based intensity measures for probabilistic seismic demand modeling of modularized suspended buildings.” Bulletin of Earthquake Engineering, 20(10): 5383-5426. [Link]

  • J24.Fan X., Wang X., Zhang X., and Yu X. (2022) “Machine learning based water pipe failure prediction: The effects of engineering, geology, climate and socio-economic factors.” Reliability Engineering & System Safety, 108185. [Link]

  • J23.Pang Y., and Wang X.* (2021) “Cloud-IDA-MSA conversion of fragility curves for efficient and high-fidelity resilience assessment.” Journal of Structural Engineering (ASCE), 147(5): 04021049. [Link] [Code] (Selected as Editor’s Choice)

  • J22.Wang X., Shafieezadeh A., and Padgett J.E. (2021) “FOSID: A fractional order spectrum intensity for probabilistic seismic demand modeling of extended pile-shaft-supported highway bridges under liquefaction and transverse spreading.” Bulletin of Earthquake Engineering, 19(6): 2531-2559. [Link] [Code]

  • J21.Wang X.* (2021) “Empirical probability distribution models for soil-layer thicknesses of liquefiable ground.” Journal of Geotechnical and Geoenvironmental Engineering (ASCE), 147(6): 06021005. [Link] [Data] (Highlighted on NSF NHERI News and Research Curated Weekly)

  • J20.Wang X.*, Li Z., and Shafieezadeh A. (2021) “Seismic response prediction and variable importance analysis of extended pile-shaft-supported bridges against lateral spreading: Exploring optimized machine learning models.” Engineering Structures, 236: 112142. [Link]

  • J19.Pang Y., and Wang X.* (2021) “Enhanced Endurance-Time-Method (EETM) for efficient seismic fragility, risk and resilience assessment of structures.” Soil Dynamics and Earthquake Engineering, 144: 106731. [Link]

  • J18.Wang X., Ji B., and Ye A. (2020) “Seismic behavior of pile-group-supported bridges in liquefiable soils with crusts subjected to potential scour: Insights from shake-table tests.” Journal of Geotechnical and Geoenvironmental Engineering (ASCE), 146(5): 04020030. [Link]

  • J17.Wang X., Pang Y., and Ye A. (2020) “Probabilistic seismic responses of coastal highway bridges under scour and liquefaction conditions: Does the hydrodynamic effect matter?” Advances in Bridge Engineering, 1(1): 19. [Link]

  • J16.Liu T., Wang X., and Ye A. (2020) “Roles of pile-group and cap-rotation effects on seismic failure mechanisms of partially-embedded bridge foundations: Quasi-static tests.” Soil Dynamics and Earthquake Engineering, 132: 106074. [Link]

  • J15.Wang X., Ye A., Shang Y., and Zhou L. (2019) “Shake-table investigation of scoured RC pile-group-supported bridges in liquefiable and nonliquefiable soils.” Earthquake Engineering & Structural Dynamics, 48(11): 1217-1237. [Link]

  • J14.Wang X., Shafieezadeh A., and Ye A. (2019) “Optimal EDPs for post-earthquake damage assessment of extended pile-shaft-supported bridges subjected to transverse spreading.” Earthquake Spectra, 35(3): 1367-1396. [Link]

  • J13.Wang X., Ye A., and Ji B. (2019) “Fragility-based sensitivity analysis on the seismic performance of pile-group-supported bridges in liquefiable ground undergoing scour potentials.” Engineering Structures, 198: 109427. [Link]

  • J12.Zhou L., Wang X., and Ye A. (2019) “Low cycle fatigue performance investigation on Transverse Steel Dampers for bridges under ground motion sequences using shake-table tests.” Engineering Structures, 196: 109328. [Link]

  • J11.Wang X., Fang J., Zhou L., and Ye A. (2019) “Transverse seismic failure mechanism and ductility of reinforced concrete pylon for long span cable-stayed bridges: Model test and numerical analysis.” Engineering Structures, 189: 206-221. [Link]

  • J10.Wang X., Ye A., Shafieezadeh A., and Padgett J.E. (2019) “Fractional order optimal intensity measures for probabilistic seismic demand modeling of extended pile-shaft-supported bridges in liquefiable and laterally spreading ground.” Soil Dynamics and Earthquake Engineering, 120: 301-315. DOI: [Link] [Code]

  • J09.Zhou L., Wang X., and Ye A. (2019) “Shake table test on transverse steel damper seismic system for long span cable-stayed bridges.” Engineering Structures, 179: 106-119. [Link]

  • J08.Blanco G., Ye A., Wang X.*, and Goicolea J. (2019) “Parametric pushover analysis on elevated RC pile-cap foundations for bridges in cohesionless soils.” Journal of Bridge Engineering (ASCE), 24(1): 04018104. [Link]

  • J07.Feng R., Wang X., Yuan W., and Yu J. (2018) “Impact of seismic excitation direction on the fragility analysis of horizontally curved concrete bridges.” Bulletin of Earthquake Engineering, 16(10): 4705-4733. [Link]

  • J06.Wang X., Shafieezadeh A., and Ye A. (2018) “Optimal intensity measures for probabilistic seismic demand modeling of extended pile-shaft-supported bridges in liquefied and laterally spreading ground.” Bulletin of Earthquake Engineering, 16(1): 229-257. [Link]

  • J05.Wang X., Ye A., Shafieezadeh A., and Li J. (2018) “Shallow-layer p-y relationships for micropiles embedded in saturated medium dense sand using quasi-static test.” Geotechnical Testing Journal (ASTM), 41(1): 193-206. [Link]

  • J04.Shen X., Wang X., Ye Q., and Ye A. (2017) “Seismic performance of Transverse Steel Damper seismic system for long span bridges.” Engineering Structures, 141: 14-28. [Link]

  • J03.Wang X., Luo F., Su Z., and Ye A. (2017) “Efficient finite-element model for seismic response estimation of piles and soils in liquefied and laterally spreading ground considering shear localization.” International Journal of Geomechanics (ASCE), 17(6): 06016039. [Link]

  • J02.Wang X., Ye A., He Z., and Shang Y. (2016) “Quasi-static cyclic testing of elevated RC pile-cap foundation for bridge structures.” Journal of Bridge Engineering (ASCE), 21(2): 04015042. [Link]

  • J01.He Z., Liu W., Wang X., and Ye A. (2016) “Optimal force-based beam-column element size for reinforced concrete piles in bridges.” Journal of Bridge Engineering (ASCE), 21(11): 06016006. [Link]

中文EI

  • JC14.王晓伟, 叶爱君, 李闯. 场地液化对不同形式梁桥地震反应的影响[J]. 同济大学学报, 2018, 46(6): 759-766. [Link]

  • JC13.王晓伟, 李闯, 叶爱君, 商宇. 可液化河谷场地简支梁桥的地震反应分析[J]. 中国公路学报, 2016, 29(4): 85-95. [Link]

  • JC12.王晓伟, 叶爱君, 商宇. 砂土地基小直径单桩的浅层土p-y曲线[J]. 岩土工程学报, 2018, 40(9): 1736-1745. DOI: [Link]

  • JC11.王晓伟, 布兰克, 叶爱君, 赫中营. 砂土中桥梁高桩承台基础的抗震延性能力参数分析[J]. 土木工程学报, 2018, 51(5): 112-121. DOI: [Link]

  • JC10.王晓伟, 叶爱君, 罗富元. 液化场地桩柱式基础桥梁结构地震反应的敏感性分析[J]. 工程力学, 2016, 33(8): 132-140. DOI: [Link]

  • JC09.王晓伟, 叶爱君, 沈星, 庞于涛. 大跨度桥梁边墩横向减震体系的地震易损性分析[J]. 同济大学学报, 2016, 44(3): 333-340. DOI: [Link]

  • JC08.王晓伟, 赫中营, 叶爱君. 桥梁高桩承台基础地震破坏机理试验研究[J]. 同济大学学报, 2014, 42(9): 1313-1320. DOI: [Link]

  • JC07.叶爱君, 周连绪, 陈光, 王晓伟. 大跨度斜拉桥倒Y型混凝土桥塔的横向拟静力试验[J]. 土木工程学报, 2018, 51(9): 66-74. DOI: [Link]

  • JC06.商宇, 叶爱君, 王晓伟. 冲刷条件下的桩基桥梁振动台试验[J]. 中国公路学报, 2017, 30(12): 280-289. [Link]

  • JC05.叶爱君, 方家欣, 张少为, 王晓伟. 小箱梁桥的横向减震体系及其耗能特性[J]. 中国公路学报, 2017, 30(12): 21-29. [Link]

  • JC04.刘腾飞, 叶爱君, 王晓伟. 土体约束对桩柱式桥墩塑性铰长度的影响[J]. 同济大学学报, 2016, 44(10): 1490-1496. DOI: [Link]

  • JC03.魏洋, 王晓伟, 李国芬. 配筋重组竹受弯试件力学性能试验[J]. 复合材料学报, 2014, 31(4): 1030-1036. [Link]

  • JC02.沈星, 叶爱君, 王晓伟. 双柱墩弹塑性位移能力简化计算方法[J]. 同济大学学报, 2014, 42(4): 513-519. DOI: [Link]

  • JC01.沈星, 叶爱君, 王晓伟. 柔性横系梁双柱墩的抗震行为分析[J]. 同济大学学报, 2013, 41(3): 342-347. DOI: [Link]


版权所有 同济大学土木工程学院桥梁工程系 上海市四平路1239号