崔巍
发布时间:2023-06-07        浏览次数:2719

职 称:助理教授

邮 箱:cuiwei@tongji.edu.cn

研究领域:

结构风工程、基于性能抗风设计、风灾模拟

所属研究室:

桥梁与结构抗风研究室





教育经历

  • Northeastern University, Boston, MA, USA, 工学博士      2012.08 - 2017.05

  • 同济大学,土木工程学院,工学硕士                                   2009.08 - 2012.07

  • 同济大学,土木工程学院,工学学士                                  2005.08 - 2009.07

  • 山西长治学院附属中学,高中                                             2002.09 - 2005.07

工作经历

  • 同济大学,助理教授                           2022.09 - 至今

  • 同济大学,助理研究员                        2018.09 - 2022.08

  • BMT 风工程咨询公司,项目工程师     2017.05 - 2018.08

科研项目

  • 国家自然科学基金,缆索承重桥梁脉动风致屈曲后阶跃现象及极限抗风稳定状态研究,主持,24 万元,52008314,在研

  • 上海自然科学基金-面上项目,数据驱动的桥梁风致振动控制方程逆向还原方法研究,主持,20 万元,23ZR1464900,在研

  • 国家重点研发计划,大跨公路桥梁涡激共振防控关键技术及装备,子课题负责人,54 万元,2022YFC3005302,在研

  • 国家重点研发计划青年科学家项目,线型桥隧交通基础设施结构安全智能诊断基础科学问题,子课题负责人,60 万元,2021YFF0500150,在研

  • 台风非高斯脉动特性对桥梁及行车耦合系统作用影响与安全控制 ,主持,30 万元,19PJ1409800,已结题

科研奖励

  • 上海市科委,2019

  • 中国公路学会,2020 年科学技术一等奖,强/台风环境大跨桥梁抗风关键技术及应用,10/15

  • 中国发明协会,2022 年发明创业奖创新奖一等奖,大跨/空间柔性结构风效应控制关键技术与应用,3/6

  • 北美风工程学会,2019 年度最佳论文,A new stochastic formulation for synthetic hurricane simulationover the North Atlantic Ocean[J]. Engineering Structures, 2019, 199: 109597.

  • 2020 年全国环境风工程学术会议,优秀论文,基于模式识别的风灾气候分类算法

  • 2018 年首届空气动力学大会,青年优秀论文,具有复杂振型的高层建筑结构在不同风向下的自激力理论分析

  • 2016 年工程力学会议 (EMI 2016),优秀学生论文,Statistical modeling of Hurricane over North AtlanticOcean

毕业学生

  •  谢茜,所获荣誉:国家奖学金,同济优秀毕业论文 毕业去向:安徽省电力设计院有限公司

  • 初晓雷,所获荣誉:国家奖学金,同济优秀毕业生 毕业去向:UC Berkeley 攻博

  • 樊沛,毕业去向:陕西建工集团有限公司

工程项目

  • 虎门大桥涡振应急, 深中通道抗风研究, 西堠门公铁两用大桥抗风研究, 狮子洋大桥抗风研究

学术论文

  1. Chu X, Cui W*, Xu S, et al. Multiscale Time Series Decomposition for Structural Dynamic Properties: Long-TermTrend and Ambient Interference[J]. Structural Control and Health Monitoring, 2023, 2023.

  2. Ma T, Cui W*, Gao T, et al. Data-based autonomously discovering method for nonlinear aerodynamic force of quasi-flatplate[J]. Physics of Fluids, 2023.

  3. Zhao L, Ma T, Cui W*, et al. Finite element based study on aerostatic post-buckling and multi-stability of long-spanbridges[J]. Structure and Infrastructure Engineering, 2023: 1-15.

  4. Ma T, Cui W*, Zhao L, et al. Extreme wind speed prediction in mountainous area with mixed wind climates[J]. StochasticEnvironmental Research and Risk Assessment, 2023, 37(3): 1163-1181.

  5. Liu P, Chu X, Cui W*, et al. Bayesian inference based parametric identification of vortex-excited force using on-sitemeasured vibration data on a long-span bridge[J]. Engineering Structures, 2022, 266: 114597.

  6. Chu X, Cui W*, Zhao L, et al. Life-Cycle Assessment of Long-Span Bridge’s Wind Resistant Performance ConsideringMultisource Time-Variant Effects and Uncertainties[J]. Journal of Structural Engineering, 2022, 148(8): 04022092.

  7. Lei S, Cui W*, Patruno L, et al. Improved state augmentation method for buffeting analysis of structures subjected tonon-stationary wind[J]. Probabilistic Engineering Mechanics, 2022, 69: 103309.

  8. Chu X, Cui W*, Liu P, et al. Bayesian spectral density approach for identification of bridge section’s flutter derivativesoperated in turbulent flow[J]. Mechanical Systems and Signal Processing, 2022, 170: 108782.

  9. Ma T, Cui W*, Zhao L, et al. Optimization of long-span suspension bridge erection procedure considering flutter risk inmixed extreme wind events[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 222: 104889.

  10. Cui W, Zhao L*, Ge Y. Non-Gaussian turbulence induced buffeting responses of long-span bridges based on state aug mentation method[J]. Engineering Structures, 2022, 254: 113774.

  11. Zhao L, Cui W*, Shen X, et al. A fast on-site measure-analyze-suppress response to control vortex-induced-vibration ofa long-span bridge[J]. Structures, 2022, 35.

  12. Chu X, Cui W*, Zhao L, et al. Probabilistic flutter analysis of a long-span bridge in typhoon-prone regions consideringclimate change and structural deterioration[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 215:104701.

  13. Cui W, Zhao L*, Ge Y. Non-Gaussian Turbulence Induced Buffeting Responses of Long-Span Bridges[J]. Journal ofBridge Engineering, 2021, 26(8): 04021057.

  14. Cui W, Ma T, Zhao L*, et al. Data-based windstorm type identification algorithm and extreme wind speed prediction[J].Journal of Structural Engineering, 2021, 147(5): 04021053.

  15. Cui W, Zhao L*, Cao S, et al. Generating unconventional wind flow in an actively controlled multi-fan wind tunnel[J].Wind and Structures, 2021, 33(2): 115-122.

  16. Cui W, Zhao L*, Cao S, et al. Bayesian optimization of typhoon full-track simulation on the Northwestern Pacific segmented by QuadTree decomposition[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 208:104428.

  17. Cui W*, Ma T, Caracoglia L. Time-cost “trade-off” analysis for wind-induced inhabitability of tall buildings equippedwith tuned mass dampers[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 207: 104394.

  18. Zhao L, Xie X, Zhan Y, Cui W*, et al. A novel forced motion apparatus with potential applications in structural engineering[J]. Journal of Zhejiang University-SCIENCE A, 2020, 21(7): 593-608.

  19. Zhao L, Cui W*, Zhan Y, et al. Optimal structural design searching algorithm for cooling towers based on typical adversewind load patterns[J]. Thin-Walled Structures, 2020, 151: 106740.

  20. Cui W, Caracoglia L*. Performance-based wind engineering of tall buildings examining life-cycle downtime and multisource wind damage[J]. Journal of Structural Engineering, 2020, 146(1): 04019179.

  21. Zhao L, Cui W*, Ge Y. Measurement, modeling and simulation of wind turbulence in typhoon outer region[J]. Journalof Wind Engineering and Industrial Aerodynamics, 2019, 195: 104021.

  22. Cui W, Caracoglia L*. A new stochastic formulation for synthetic hurricane simulation over the North Atlantic Ocean[J].Engineering Structures, 2019, 199: 109597.

  23. Yu M, Zhao L*, Zhan Y, Cui W*, et al. Wind-resistant design and safety evaluation of cooling towers by reinforcementarea criterion[J]. Engineering Structures, 2019, 193: 281-294.

  24. Cui W, Caracoglia L*. A unified framework for performance-based wind engineering of tall buildings in hurricane-proneregions based on lifetime intervention-cost estimation[J]. Structural safety, 2018, 73: 75-86.

  25. Cui W, Caracoglia L*. A fully-coupled generalized model for multi-directional wind loads on tall buildings: A development of the quasi-steady theory[J]. Journal of Fluids and Structures, 2018, 78: 52-68.

  26. Cui W, Caracoglia L*. Examination of experimental variability in HFFB testing of a tall building under multi-directionalwinds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 171: 34-49.

  27. Cui W, Caracoglia L*. Exploring hurricane wind speed along US Atlantic coast in warming climate and effects onpredictions of structural damage and intervention costs[J]. Engineering Structures, 2016, 122: 209-225.

  28. Cui W, Caracoglia L*. Physics-based method for the removal of spurious resonant frequencies in high-frequency forcebalance tests[J]. Journal of Structural Engineering, 2016, 142(2): 04015129.

  29. Cui W, Caracoglia L*. New GPU computing algorithm for wind load uncertainty analysis on high-rise systems[J]. WindStruct, 2015, 21(5): 461-487.

  30. Cui W, Caracoglia L*. Simulation and analysis of intervention costs due to wind-induced damage on tall buildings[J].Engineering Structures, 2015, 87: 183-197.


版权所有 同济大学土木工程学院桥梁工程系 上海市四平路1239号